《深入理解计算机视觉:在边缘端构建高效的目标检测应用》按实战项目研发的先后顺序,介绍了目标检测神经网络从研发到运营的全生命周期。首先介绍了目标检测场景下的图片标注方法和数据格式,以及与之密切相关的特征融合网络和预测网络;介绍了数据“后处理”所涉及的 NMS 算法及其变种,在此基础上,读者只需结合各式各样的骨干网络就可以搭建完整的一阶段目标检测神经网络模型。接下来介绍了神经网络的动态模式和静态模式两种训练方法,以及训练过程中的数据监控和异常处理。最后以亚马逊云和谷歌 Coral 开发板为例,介绍了神经网络的云端部署和边缘端部署。其中,对于边缘端部署,本书还详细介绍了神经网络量化模型的基础原理和模型编译逻辑,这对将神经网络转化为可独立交付的产品至关重要。
《深入理解计算机视觉:在边缘端构建高效的目标检测应用》还结合智慧交通、智慧后勤、自动驾驶等项目,介绍了计算机视觉数据增强技术和神经网络性能评估原理,以及边缘计算网关、边缘计算系统、自动驾驶数据的计算原理和 PointNet++等多个三维目标检测神经网络,帮助读者快速将计算机视觉技术运用到实际生产中。
《深入理解计算机视觉:在边缘端构建高效的目标检测应用》实用性非常强,既适合对计算机视觉具有一定了解的高等院校本科生、研究生及具有转型意愿的软件工程师入门学习,又适合计算机视觉工程项目研发和运营人员参考阅读。对深度学习关键算法和骨干网络设计等基础知识感兴趣的读者还可以阅读本书作者编写的《深入理解计算机视觉:关键算法解析和深度神经网络设计》一书。
《深度学习计算机视觉实战》是一本看懂计算机视觉的实战指南,使用理论与实践相结合的思想,真正一站式搞定理论学习、算法开发到模型部署上线。 全书内容共分为四个部分。第一部分包括第1、2章,主要讲解深度学习和计算机视觉基础,如计算机视觉领域的经典网络和常见的目标检测算法;第二部分包括第3~6章,主要讲解图像处理知识,结合应用案例,对知识点进行分析说明;第三部分包括第7~11章,主要讲解计算机视觉中的实战项目,对实现细节做了追本溯源的讲解;第四部分包括第12~13章,主要讲解模型的落地部署,该部分的讲解基于TensorFlow Lite框架,该框架受众广、热度高,且在各种平台都有对应的支持与优化加速方案,方便读者使用。 本书中的上百个知识点与50多个案例都是作者工程应用中的经验总结,每章末尾均有"进阶必备”,给读者提供更多的拓展知识。本书适合计算机视觉的初学者、计算机视觉算法开发人员、对深度学习有兴趣的用户或者亟须工程落地使用的用户,也适合作为高校相关专业的学生教材使用。
本站基于Calibre构建,感谢开源界的力量。所有资源搜集于互联网,如有侵权请邮件联系。
Github | Docker | Project
《深入理解计算机视觉:在边缘端构建高效的目标检测应用》按实战项目研发的先后顺序,介绍了目标检测神经网络从研发到运营的全生命周期。首先介绍了目标检测场景下的图片标注方法和数据格式,以及与之密切相关的特征融合网络和预测网络;介绍了数据“后处理”所涉及的 NMS 算法及其变种,在此基础上,读者只需结合各式各样的骨干网络就可以搭建完整的一阶段目标检测神经网络模型。接下来介绍了神经网络的动态模式和静态模式两种训练方法,以及训练过程中的数据监控和异常处理。最后以亚马逊云和谷歌 Coral 开发板为例,介绍了神经网络的云端部署和边缘端部署。其中,对于边缘端部署,本书还详细介绍了神经网络量化模型的基础原理和模型编译逻辑,这对将神经网络转化为可独立交付的产品至关重要。
《深入理解计算机视觉:在边缘端构建高效的目标检测应用》还结合智慧交通、智慧后勤、自动驾驶等项目,介绍了计算机视觉数据增强技术和神经网络性能评估原理,以及边缘计算网关、边缘计算系统、自动驾驶数据的计算原理和 PointNet++等多个三维目标检测神经网络,帮助读者快速将计算机视觉技术运用到实际生产中。
《深入理解计算机视觉:在边缘端构建高效的目标检测应用》实用性非常强,既适合对计算机视觉具有一定了解的高等院校本科生、研究生及具有转型意愿的软件工程师入门学习,又适合计算机视觉工程项目研发和运营人员参考阅读。对深度学习关键算法和骨干网络设计等基础知识感兴趣的读者还可以阅读本书作者编写的《深入理解计算机视觉:关键算法解析和深度神经网络设计》一书。